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a b s t r a c t 

This paper presents a new optimization approach for the simultaneous structural optimization of process 

flowsheets with the operating conditions through combining process simulators with metaheuristic tech- 

niques. The proposed approach allows optimization of a superstructure in process simulators and reduce 

the computation time. A superstructure for different configurations for producing solar-grade silicon is 

considered, which includes three different configurations for solar-grade silicon production (Siemens Pro- 

cess, Intensified FBR Union Carbide Process, and Hybrid Process). The operating conditions with major 

impact in the performance of each of the proposed configuration were considered as decision variables. 

The improved multi-objective differential evolution (I-MODE) algorithm was selected as search method 

from others metaheuristic techniques because its efficiency to solve multi-objective problems in a short 

central process unit (CPU) time. The optimization algorithm consists in linking the process simulator 

software Aspen Plus TM with the metaheuristic technique. The results offered attractive options for the 

considered objective functions in the addressed case study. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The proper use of natural and energy resources has gained

 fundamental relevance to satisfy the demands of the mod-

rn lifestyle in current population growth (Pérez-Lombard, 2008 ).

herefore, it is necessary to propose optimization strategies where

t is guaranteed that the limited resources are used in the best

ossible way ( Pimentel et al., 1994 ). Many alternative solutions

ave been proposed to reduce the environmental problem through

he study of different industrial processes ( Bamufleh et al., 2013 ),

upply chains ( Domínguez-García et al., 2017 ), habitational com-

lexes ( Núñez-López et al., 2018 ), solid waste management (Diaz-

arriga-Fernandez, 2018 ), distributed multiproduct biorefineries

 Santibañez-Aguilar et al, 2014 ) and water, food and power grids

 González-Bravo et al., 2018 ), among others. 

The traditional optimization for the production processes usu-

lly involves the simultaneous selection of the flowsheet as well
∗ Corresponding author. 

E-mail address: jmponce@umich.mx (J.M. Ponce-Ortega). 
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s the corresponding operating conditions ( González-Bravo et al.,

017 ). The optimization techniques that are currently used in

ll these studies are based on mathematical programing ( Ponce-

rtega et al., 2008 ) and deterministic optimization ( Ponce-Ortega

 Santibañez-Aguilar, 2019 ), whose formulation usually corre-

ponds to mixed-integer non-linear programming problems ( Costa

Oliveira, 2001 ) that are formulated based on a superstructure

 Yeomans & Grossmann, 1999 ) through disjunctive programming

ormulations ( Grossmann & Ruiz, 2012 ). 

Mathematical programming techniques have as main limitation

he availability to produce optimal solutions in non-convex prob-

ems ( Coello-Coello et al., 2002 ), and frequently is not possible

ven to find a feasible solution ( Devillers, 1996 ). The involved re-

ationships in simulating the units in chemical and process indus-

ries frequently involve high non-linear and non-convex formula-

ions ( Harjunkoski et al., 1998 ); therefore, process simulators have

ncluded alternative solution approaches through sequential mod-

lar strategies ( Sandler, 2015 ), where the involved units are simu-

ated sequentially to find a feasible solution ( Biegler et al., 1997 ). 

https://doi.org/10.1016/j.compchemeng.2020.106946
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106946&domain=pdf
mailto:jmponce@umich.mx
https://doi.org/10.1016/j.compchemeng.2020.106946
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Nomenclature 

CF Crossover Fraction 

ChiTC Chi-square Termination Criteria 

CPU Central Process Unit 

DE Differential Evolution 

EP Entire Production 

F Mutation Fractions 

F1 Emissions Factor (1.3 lb/btu) 

F2 Efficiency Factor (0.85) 

I-MODE Improved Multi Objective Differential Evolution 

MIDACO Mixed Integer Distributed Ant Colony Optimization 

MINLP Mixed-Integer Non-Linear Programming 

MNG Maximum Numbers of Generations 

MOEA/D Multi-Objective Evolutionary Algorithm based on 

Decomposition. 

NA Not apply 

PS Population Size 

SP Sale Price 

SSTC Steady State Termination Criteria 

TE Entire CO 2 Emissions 

TI Total Income 

TLS Taboo List Size 

TP Total Profit 

TR Taboo Radius 

VBA Visual Basic for Applications 

This way, very powerful process simulators are available to sim-

ulate different types of processes ( Dimian, 2003 ) including chemi-

cal processes ( Husain, 1986 ); however, the main limitation of these

process simulators is that only a specific process (specific units

and their interconnections) can be analyzed but the optimization

is not allowed ( Martin-Martin, 2019 ) because the involved units

are considered as black-boxes ( Capitanescu et al., 2015 ), whose

relationships cannot be manipulated. Recently, process simulators

have incorporated optimization tools, where in addition to a sen-

sitivity analysis it is possible to establish some objective functions.

However, these optimization tools incorporated in commercial sim-

ulation software are usually very limited ( Segovia-Hernández &

Gómez-Castro, 2017 ) because allow the manipulation of a single

degree of freedom, mono-objective and local optimization (lim-

ited optimization tools) and the main disadvantage implies that

the structural optimization is not allowed ( Gutiérrez-Antonio &

Briones-Ramírez, 2010 ). 

To improve the performance of the used optimization tools in

the commercial process simulators ( Najim et al., 2004 ), the use

of metaheuristic algorithms ( Sharma & Rangaiah, 2016 ), nature in-

spired cooperative strategies ( González et al., 2010 ) and nature-

inspired optimization algorithms ( Yang, 2014 ) through external

links with process simulators has been proposed ( Hernández-

Pérez et al., 2019 ); this way, several metaheuristic approaches

have been considered such as genetic/quadratic search algorithm

( Jang et al., 2005 ) and parallelization strategies for rapid and ro-

bust evolutionary multi-objective optimization ( Tang et al., 2007 )

together with different process simulators ( Lim et al., 1999 ). 

Differential Evolutionary (DE) is an evolutionary algorithm

that was developed to handle optimization problems. DE algo-

rithm has been used for solving chemical engineering problems

( Dragoi & Curteanu, 2016 ). For example, Errico et al. (2017) in-

tegrated synthesis and differential evolution in a methodology

for design and optimization of distillation processes, Miranda-

Galindo et al. (2014) used stochastic multi-objective optimiza-

tion algorithms to hydrodesulfurization process of diesel, Quiroz-

Ramírez et al. ( 2017 ) applied a multi-objective stochastic optimiza-
ion to a hybrid process production-separation in the production of

iobutanol, Wong et al. (2016) used elitist non-dominated sorting

enetic algorithm with termination criteria to design of shell-and-

ube heat exchangers for multiple objectives, Ho-Huu ( 2018 ) re-

orted an improved Multi-Objective Evolutionary Algorithm based

n Decomposition (MOEA/D) for bi-objective optimization prob-

ems with complex Pareto fronts applicated to structural optimiza-

ion. Hernandez-Perez et al. (2020) optimized the methanol pro-

uction process from shale gas using an evolutionary algorithm.

owever, the main limitation that only the operating conditions

re optimized still remind. 

Simultaneous optimization of discrete structures with process

perating conditions is well-studied in literature. For example,

rooss and Roosen ( 1998 ) proposed process optimization using

volutionary algorithms; however, hybrid optimization algorithms

ased on differential evolution have been developed to be more

fficient in solving problems in which conventional metaheuristic

ools can be trapped in a local optimum or consumed too much

omputing time. On the other hand, the direct search methods

entioned by Lang and Biegler (1987) , such as SQP (Successive

uadratic Programing), are a class of methods for finding a lo-

al optimum to nonlinear constrained optimization problems, but

onlinear programming does not guarantee the solution of highly

on-convex problems. Likewise, the metaheuristic design frame-

ork by Geraili et al. (2014) presented a modeling approach for

esigning energy systems applicated to biorefineries; however, it

id not include a strategy for the optimization of multiple simula-

ions in which different configurations of the process flowsheet is

ossible. 

Zhao et al. (2018) proposed a superstructure optimization

ithin ProSimPlus simulator using an external metaheuristic op-

imizer called Mixed Integer Distributed Ant Colony Optimiza-

ion (MIDACO). ProSimPlus is a process engineering software that

erforms rigorous mass and energy balance calculations for a

ide range of industrial steady-state processes (prosim.net). How-

ver, it is a little known and less used commercial simulator

ompared to Aspen Plus. MIDACO is a global optimization soft-

are ( Schlueter, 2009 ) based on extended ant colony optimiza-

ion ( Schlüter et al., 2009 ) for non-convex Mixed-Integer Non-

inear Programming (MINLP). On the other hand, Improved Multi-

bjective Differential Evolution (I-MODE) is a new approach to

olve multi-objective optimization based on basic DE ( Sharma and

angaiah, 2013 ). DE is a simple algorithm, but it has been suc-

essfully applied to selected real world multi-objective problems

 Fan et al., 2008 ). The I-MODE algorithm is equipped with contour

ine to select candidate individuals, and combines with the crowd-

ng distance sorting and Pareto-based ranking, and epsiv domi-

ance. The I-MODE code is developed in Visual Basic for Applica-

ion (VBA), so it can be easily manipulated since Micosoft TM Excel.

One important point is that the linking between process simu-

ators usually allows optimizing the operating conditions, and the

ain contribution of the present optimization approach is to com-

ining process simulators with metaheuristic techniques for simul-

aneous optimization of process flowsheets with the correspond-

ng operating conditions. This paper proposes a method through

hich it is possible to analyze simultaneously multiple configura-

ions of the same process; this way, it can find the optimal solution

ithout the need of simulating each case with every set of values.

his implies a considerable saving in the computational time since

nly the configurations with the best performance will take part in

ext generations displacing the configurations with the worst ob-

ective function values. In a conventional way to search an optimal

olution, it is necessary to simulate each configuration with pos-

ible sets of values until a termination criterion is reached, which

onsumes a considerable computational time. However, with the

ethod proposed here, it is possible to find the best operating val-
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Fig. 1. Conventional single-case optimization framework. 
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Fig. 2. Optimization framework where multiple configurations are possible. 

Fig. 3. Multi-case optimization framework. 
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es in the best configuration in the equivalent computation time to

erform the search in a single case. 

The Solar-Grade Silicon Process (SGSP) was selected as case

tudy to use the proposed optimization method, where different

onfigurations of the same process can be optimized simultane-

usly to determine the optimal structure and operating conditions.

he case of the solar-grade silicon production process is not very

arge in terms of the number of possible configurations; however,

t is very useful to explain the proposed methodology and follow

he manipulation of the variables and present the necessary code

or the call of the files that contain the simulation. The difference

etween each configuration depends on the order for units, the

onnection for streams and the used technology. The SGSP involves

ifferent stages and there are several alternatives for the produc-

ion of this silicone. The most important ones are the Siemens

rocess, the Intensified FBR Union Carbide Process, and the Hy-

rid Process, each of which has been analyzed and previously re-

orted ( Ramírez-Márquez et al., 2019 ). However, these previous

orks have focused on the design part of the separation columns

ithout considering the search for the best operating conditions

f the involved reactors. Although the SGSP has been previously

ddressed, in this work the simultaneous structural and operating

onditions for the considered process are optimized to reduce the

omputational time and improve the obtained solutions through a

ew methodology. 

. General optimization approach 

In a general way, the reported optimization approaches for pro-

ess flowsheets through metaheuristic strategies consist in link-

ng a process flow diagram previously specified in a commercial

imulation program, and subsequently, using a controller program,

earch variable values are exported to the simulator and the re-

ponse variable values are imported after running the simulation

as shown in Fig. 1 ). A search variable (also called a decision vari-

ble) is one whose specification exhausts a degree of freedom in

he mathematical model in the process simulator, the value will

e randomly changed by the algorithm in order to explore bet-

er solutions. A response variable is one that is obtained as a re-

ult of the operations that correspond to the mathematical model

f the process simulator and its value is dependent on the value

f the search variables. The strategy of a stochastic optimization

lgorithm is to manipulate the value of the search variables and

valuate the performance (through objective functions) of the cor-

esponding value of the response variables. 

If exists more than one configuration option in the process, that

s, if it is possible to choose between different configurations, it is

ecessary to optimize each of these options separately and then

ompare them to choose the one that best meets the considered

bjectives (see Fig. 2 ). This strategy leads to problems inherent in

he manipulation of different cases or configurations since each of
hem requires the algorithm specifications and the creation of a

ode for linking the process simulator with the optimization algo-

ithm. Therefore, it is inevitable to infer that the computation time

s greater in at least as many times as different configurations of

he process exist. 

The simulation would fail in some operating condition but suc-

ess in others, this is determined which continues and which is

iscarded by evaluating the performance of the objective functions.

ach evaluation corresponds to a particular set of values of the de-

ision variables proposed randomly by the optimization algorithm.

he performance of each set of values is evaluated and, in the way

hat an evolutionary algorithm proceeds, only the best performing

olutions can generate offspring. As in any evolutionary algorithm,

art of the values that make up the proposed solution set, will be

sed to generate a new set of values and be evaluated again in the

ext iteration. 

In this paper, a new optimization strategy is proposed for the

election of the best process flowsheet when multiple configu-

ations are possible. This strategy simultaneously optimizes the

tructural configuration for the flowsheet and the operating con-

itions ( Fig. 3 ). This optimization method is based on the use of

ifferent cases to find the optimum values for the selected deci-

ion variables and, at the same time, the selection of the best pro-

ess configuration. In this method, the case number of the process

onfiguration (simulation case) is treated as a decision variable. In

his way, the simulation case takes part in the solution vector as a

hromosome. It is possible using a code instruction in which part

f the simulation file path is a number. This number is declared

n the algorithm as an integer variable ( Fig. 4 ). An integer variable

s one that can only acquire a value of an integer number, that is,

efined without including decimals or fractions (for example, one,

wo, three, etc.). 

The optimization problem presented in this new strategy is a

ulti-objective one, this way, it can be implemented the opti-

ization to obtain a pareto solution in the stipulated optimization
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Fig. 4. Multi-case optimization solution. 
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range; however, this solution strategy corresponds to the classical

approaches for addressing these types of problems, the above leads

to the inherent complications in these methodologies, which as ex-

plained, involve excessive computing time and complicated manip-

ulation of both the optimization algorithm and the necessary codes

to link the programs. The reason why different cases are specified

(Case 1 to Case 3) is not because this is the number of optimal

solutions, but that each of these configurations corresponds to a

different alternative solution to the process flowsheet configura-

tion. However, it is not known which of these options represents

the best performance of the objective functions, and which is the

best value of the variables that can be manipulated in the process.

That is why the proposed strategy addresses the selection of the

process configuration and simultaneously searches for the optimal

values of the operating conditions (search variables). 

Using the code shown in Fig. 4 , the algorithm will randomly

propose a case number to be solved, and will export the values

of the search variables to it. If this is a successful configuration, it

will simulate a greater number of times than cases that are not. In

this way, a selection of the best process flow diagram is obtained

in less computation time. 

3. Solar-grade silicon process 

The main contribution consists in a general optimization strat-

egy based on metaheuristic tools and commercial process simu-

lators. The reason why the details of the case study (solar-grade

silicon process) are exhaustively addressed is because it is neces-

sary to understand the nature and impact of the search variables

selected for the optimization model. In this way, it would be pos-
ible to associate equally relevant variables for the performance of

he objective functions established in other case studies. 

The alternatives to produce solar-grade silicon are the Siemens

rocess, the intensified FBR Union Carbide process, and the hybrid

rocess. These processes are described as follows. 

.1. Siemens process 

This process uses SiO 2 as raw material. The first stage is to pro-

uce metallurgic silicon via SiO 2 reduction with coal. An electric

rc furnace is the unit used for this transformation ( Ranjan et al.,

011 ). The purity achieved for metallurgic grade silicon, Si(MG),

s around 98-99%. Si(MG), H 2 and HCl are fed to a fluidized bed

or the production of chlorosilanes. The exit stream is fractionated.

ydrogen (H 2 ) and hydrogen chloride (HCl) are removed when

hlorosilanes condense. Then, a distillation column is used to split

he liquid stream of SiHCl 3 and SiCl 4 . The bottoms, SiCl 4 , consist

f a byproduct of the process while from the top a stream 99.99%

iHCl 3 is obtained ( Díez et al., 2013 ). This revision is sufficient to

eed the stream to the chemical vapor deposition reactor of the

iemens Process. The production of solar grade silicon uses SiHCl 3 
nd hydrogen via chemical vapor deposition. U shape bars of ul-

rapure silicon are used as seed. These bars are heated up using

lectric energy. After silicon deposition, byproducts of HCl, H 2 and

iCl 4 are obtained. Silicon is cooled down with an exchanger to

mbient temperature and the gases are separated by a set of pro-

ess units to be recycled to the process. The siemens process flow-

heet is shown in Fig. 5 . 
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Fig. 5. Solar-grade silicon production process.Siemens Process Flowsheet. 
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.2. Intensified FBR union carbide process 

The stage to obtain Si(MG) is the same as for the Siemens Pro-

ess. The Si(MG) is hydrogenated together with SiCl 4 in a fluidized

ed reactor. The stream of products is separated using a flash mod-

le to remove the chlorosilanes. Afterwards, the stream consisting

ainly of trichlorosilane and tetrachlorosilane is fed to a system of

wo distillation columns. A high purity stream of SiCl 4 is obtained

rom the bottoms of the first column, which is recycled. From the

ther column, a high purity trichlorosilane stream is obtained from

he bottoms that are fed to a reactive distillation column. Next,

richlorosilane disproportion reactions are carried out in a reactive

istillation column. High purity trichlorosilane is fed to the new in-

ensified process, the reactive distillation system. The column pro-

uces high purity silane over the top that is fed to the chemical

apor deposition reactor to produce high purity silicon and hy-

rogen ( Farrow, 1974 ). It is modeled on a stoichiometric reactor

here the silane conversion reaches 80% (Tejero-Ezpeleta, 2004 ).

he product stream is separated to isolate the polysilicon from the

ases. Polysilicon is solidified while the gases, mainly H 2 and HCl,

re recycled. The intensified FBR union carbide process flowsheet

s shown in Fig. 6 . 

.3. Hybrid process 

The production of Si(MG) is carried out, as in previous cases,

y means of the carboreduction of SiO 2 . Then, an FBR is used for

he hydrogenation of Si(MG) and SiCl 4 to obtain a mixture of di,

ri and tetrachlorosilane. Next, two distillation columns are used

o separate the mixture of chlorosilanes. From the top of the first

olumn, there is obtained di and trichloro silane, while from the

ottoms a mixture of tetrachlorosilane with traces of SiHCl 3 is ob-

ained. SiHCl 3 is removed and the tetrachlorosilane is recycled to

he process. The second column separates the mixture of SiHCl 2 
nd SiHCl 3 , and obtained from the bottom SiHCl 3 of high purity.

fter that, SiHCl 3 is used as feed for the chemical Siemens vapor

eposition reactor. Next of the deposition, HCl and hydrogen are
eparated from the Si(SG). Then, both streams are cooled down.

he hybrid process flowsheet is shown in Fig. 7 . 

. Computational model formulation 

A model formulation based on a process simulation software

as implemented in this methodology to obtain the best values

or the selected decision variables. The different configurations for

owsheets of the process were introduced to the process simulator

latforms. Likewise, the initial values of the decision variables, the

hermodynamic models, and units were specified, and the absence

f errors or warnings were corroborated running every simulation.

he proposed methodology can solve this type of problems where

t is necessary to choose from different options for the configura-

ion of the same process and at the same time find the best oper-

ting conditions or design specifications. 

The performance of every set of values in each configuration

s determined by objective functions. The objective function is ex-

ressed in an equation whose value is maximized or minimized

epending on its "desirability". This equation is calculated using

he values of the response variables that are obtained from the

rocess simulator after running a simulation with the given values

f the search variables, that is, the optimizer program will propose

alues for the decision variables according to its algorithm until

he best possible value of the objective functions is obtained. 

In the case study that was selected to apply this optimization

trategy, two objective functions were selected, an economic ob-

ective function (in order to be maximized) and an environmental

bjective function (in order to be minimized). These two objective

unctions are conflicting with each other, so as will be seen in the

iscussion of results, the best solution of one offers the worst al-

ernative of the other. 

.1. Simulated process configuration 

The addressed processes by Ramírez-Márquez et al., 2018a were

he Siemens, Intensified FBR Union Carbide Process and Hybrid
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Fig. 6. Solar-grade silicon production process. Intensified FBR union carbide process Flowsheet. 
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Process. The procedure to construct the corresponding process

flowsheets was described by Ramírez-Márquez et al., 2018b , and

these initial flowsheets are used in this paper to construct the cor-

responding superstructure to simultaneously optimize the struc-

ture and operating conditions for the process. These flowsheets

were implemented in the process simulator Aspen Plus TM V8.8,

this because the available units required in the simulation, the

thermodynamic models as well as the rigorous solution approach

for analyzing processes. Aspen Plus TM is a commercial process

simulator widely used for simulation processes, were the imple-

mented approach considers zero degrees of freedom and sequen-

tial modular simulations are implemented to analyze processes.

Aspen Plus TM works in a "closed box" procedure resolving the

problem of process simulation without offering the user the possi-

bility of manipulating the used equations to obtain the presented

results.Likewise, this process simulator has some optimization op-

tions, however it consists of a very basic single variable optimiza-

tion tool, and the main limitation is that this does not allow the

structural optimization. Due to the above, in this paper is proposed

an optimization strategy that allows the linking of both search

variables and response variables as data that is used in an exter-

nal metaheuristic optimization algorithm able to work with black

box models like the ones of Aspen Plus TM or any other modular se-

quential process simulator. This way, a superstructure that consists

of these three processes for solar-grade silicon production was im-

plemented in Aspen Plus TM , this consists of the Siemens Process,

the Intensified FBR Union Carbide Process, and the Hybrid Process.

All degrees of freedom were exhausted as data requested by the

process simulator program in an initial run, such values are desig-

nated as current values. 

After the simulation of each of the processes with proposed val-

ues, some of the degrees of freedom (data requested by the process

simulator software) were selected as search optimization variables

or decision variables, that is, data that would be manipulated by

the optimization algorithm until finding the values with which the

best results of two objective functions would be obtained, which

are described below. 

1

.2. Total profit objective function 

The economic objective function consists in maximizing the to-

al profit (TP), which is defined as the entire gain that is obtained

fter subtracting what is necessary to invest a profit. TP can be cal-

ulated with the total income (TI) minus the total cost (TC), Eq. 1 .

I means the profits in a year obtained by selling the product and

an be directly calculated from the total annual production (TP)

ultiplying by a sale price (SP), Eq. 2 . TP is calculated using a re-

ponse variable, the silicon production expressed in lb/h and mul-

iplying by operating hours in a day (24 hours) and the labored

ays in a year (360 days). A SP value of 0.72 US$/lb is assumed

ased on what is reported in digital databases. 

 P = T otal P rof it = T I − T C (1)

 I = T otal Income = T P · SP (2)

here EP = T otal P roduction = P roduction ( kg 
h 

) · 24( h 
d 
) ·

60( d yr ) and SP = Sale P rice = 0 . 72( US 
kg 

) . 

 C = T otal Cost = Ut ilit ies + Depreciations (3)

TC represents the sum of the costs involved in the production

f the product, in this study two mainly were considered: the cost

f the utilities and the depreciations for each process. The depre-

iation considers equipment costs. Table 1 shows the capital cost,

he cost of utilities and depreciations. Depreciations were calcu-

ated considering a utile life of ten years for the plant in each pro-

ess. The values presented in Table 1 were obtained by the Aspen

rocess Economic Analyzer (APEA) at current values for each case. 

The economic objective function TP is calculated by the set

f Eqs. 1 to 3 starting with the response variables (EP) ob-

ained by Aspen Plus TM . TP is expressed in millions of US$ per

ear (MUS$/yr), which is obtained multiplying the production by

 × 10 −6 $/M$. 
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Fig. 7. Solar-grade silicon production process.Hybrid Process Flowsheet. 

Table 1 

Results for the total annual cost. 

Process Capital (MMUS$) Utilities (MMUS$/YR) Depreciation (MMUS$/YR) 

Siemens 4.73886 0.427862 0.473886 

Intensified FBR Union Carbide 20.7769 1.36862 2.07769 

Hybrid 6.09487 0.893691 0.609487 
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.3. Total emissions objective function 

A second objective function has been considered, which in-

olves environmental aspects. Environmental objective function

onsists in minimizing the total CO 2 emissions (TE) ( Eq. 4 ) asso-

iated with the heating (btu/h) needed in the reactors of each pro-

osed configuration, which acts as a response variable. 

 E = T otal Emissions = 

5 ∑ 

n =1 

R n 

(
kg 

h 

)
· 24 

(
h 

d 

)
· 360 

(
d 

yr 

)
(4)

Where R n corresponds to CO 2 emissions by Reactor «n» (lb/h). 

It was used the US-EPA-Rule-E9-5711 as CO 2 emission factor

ata source (F1) with a value of 2.34 ×10 −7 kg/cal for Natural Gas

s ultimate fuel source. The CO 2 energy source efficiency factor

F2) is of 0.85, which corresponds to CO 2 emissions associated with

he fuel needed to obtain high temperature by a fired heat. The

O 2 emissions are directly proportional to the needed heat (Q) as-

ociated to reactor «n» obtained by the simulator calculations. The

 value is calculated using Eq. 5 . 

 = C O 2 emissions = 

3 ∑ 

n =1 

Q n 

(
cal 

h 

)
· F 1 

(
kg 

cal 

)
· F 2 · 24 

(
h 

d 

)

·360 

(
d 

yr 

)
(5) 
TE is expressed in millions of Tons per year (MTon/yr) multiply-

ng the TE (kg/yr) by 1 × 10 −6 MTon/kg. 

. Optimization strategy 

Metaheuristic optimization methods are attractive for solv-

ng complex, high nonlinear and potentially nonconvex problems

 Ramírez-Márquez et al., 2018a ). In this paper, it has been pro-

osed a new methodology of multi-objective optimization that al-

ows to simultaneously analyze a set of different configurations of

he same process in order to find the best one while finding the

ptimal operating conditions. This strategy is based on adding the

ase number of a process configuration as an entire variable, in

his way the case number participates in the evolutionary process

f selecting the best conditions. Analyzing the configurations at the

ame time that the operating conditions and design specifications

ave multiple advantages, the main one is that the evolutionary

lgorithm will gradually discard the less successful process config-

rations for given objective functions and thus consume less com-

utational resources in simulating configurations in which the op-

imum is not found. 

.1. Optimization algorithm 

Due to the nature of this problem, which involves many equa-

ions for the rigorous simulation of processes, a metaheuristic op-
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Table 2 

Current values in each case and limits for decision variables in all cases. 

Value Case 

Units 

Reactor 1 Reactor 2 Reactor 3 

Temp (K) Press (MPa) Temp Pres (MPa) Temp (K) Press (MPa) 

Current 1 533 0.5 NA NA 1373 0.1 

2 773 3.6 773 3.86 973 4 

3 773 3.6 773 3.86 1373 0.1 

Min 1 to 3 520 0.4 750 3.6 950 0.05 

Max 1 to 3 780 3.7 800 4 1400 4.5 
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timization algorithm is necessary. The multi-objective optimization

hybrid method I-MODE ( Sharma & Rangaiah, 2013 ) works with

three different termination criteria: Chi-squared termination crite-

rion (ChiTC), Steady State termination criterion (SSTC) and Maxi-

mum Number of Generations (MNG). The I-MODE algorithm has

been successfully used in a general methodology ( Ponce-Ortega

& Hernández-Pérez, 2019 )in order to optimize previously estab-

lished process flow diagrams. That methodology consists in linking

a commercial software of process simulation with a metaheuristic

optimization algorithm. 

5.2. Decision variables 

The selected decision variables are listed in Table 2 . In general,

each reactor can be modified in two operating conditions, temper-

ature and pressure, these aspects impact in both objective func-

tions and they were selected as decision variables. The current val-

ues for all decision variables corresponding to the reaction units

are presented in Table 2 . In the same way, Table 2 shows the val-

ues for boundaries, upper (Max) and lower (Min) limits. 

In Table 2 , there are some cells corresponding to the Reactor 2

in Case 1 (Siemens Process), in which the current value does not

apply (NA), which means that it has no current assigning values

because there is no "Reactor 2" device in this configuration. The

strategy used in this methodology in order to avoid mistakes in

the process of exporting and importing variables consists in creat-

ing a "fictitious unit" within the simulation. This means that a unit

(Reactor) with the name of "Reactor 2" was assigned to which the

random values of the selected variables in the metaheuristic opti-

mization algorithm are assigned, however, the streams of said unit

are not connected to other block within the simulation, so that it

does not affect with the obtained results.This strategy was chosen

because this is the best way to assign these values to a variable call

without creating a conflict in the export of data with the process

simulator. The costs corresponding to the unit were calculated be-

fore the creation of the "fictitious unit" and the calculation of any

utility cost is not ensured, so it is not involved in the calculation

of carbon dioxide emissions. 

The initial value for the optimization metaheuristic algorithm

in each process was the half between the minimum and the max-

imum possible value. 

5.3. Constraints 

The constraints in this case study are implicit, it is that the pos-

sible restrictions are specified in the limits presented as minimum

and maximum values in Table 2 . In such a way that the restrictions

of this case study can be formulated as expressed in Eq. 6 : 

 a l Min ≤ x i ≤ V a l Max (6)

Where i is the number of the decision variables, which can take

a value since 1 up to 7 considering x 1 (which corresponds to case

number or configuration process). 
.4. Parameters associated to the used algorithm 

For the optimization process, in this study the values for the

arameters associated to the used I-MODE algorithm are the fol-

owing: population size (PS): 10 individuals, maximum number of

enerations (MNG): 30, taboo list size (TLS): 5 individuals, taboo

adius (TR): 0.01, crossover fraction (CF): 0.8, mutation fraction (F):

.8. 

With respect to evolutionary algorithms, these heuristic rules

re one of the main disadvantages, there is no exact way to deter-

ine the best values of the algorithm parameters. However, there

re many bibliographical references to choose a good value (for

xample Sharma & Rangaiah, 2013 ). In this manuscript, the way

n which they were selected incudes a sensitivity analysis, which

onsists in the following: a number is proposed for each parame-

er (number of individuals, number of generations, etc.) separately,

hen the result is analyzed after running the optimization, it is pro-

osed to double that value for the same parameter, if it improves

ignificantly it means that the proposed value is not enough, then

he procedure is repeated by doubling the value again until the

olution does not change in a considered way. Once an appropri-

te value for a parameter has been found, the same procedure is

ollowed to find a suitable value for another parameter. For more

etails see Sharma & Rangaiah (2013) . 

. Results and discussion 

This section presents the results of the multi-objective opti-

ization method. The simulation was performed on an Intel TM 

ore TM i7-6700HM CPU @ 2.6 GHz, 32 GB computer, the com-

uting time required to obtain the Pareto optimal solutions was of

6.24 min. The I-MODE optimization approach has demonstrated

o be a superior metaheuristic technic for different applications

 Sharma and Rangaiah, 2016 ), because it requires lower computa-

ion time than other approaches. The complexity of the addressed

roblem only is related to the computation time, and the imple-

ented approach can address such problems. Finally, but the most

mportant, if the simulations are optimized separately and each

ne specifies the same values for the use of the I-MODE (PS: 10

ndividuals, MNG: 30 generations) this consumes the computing

ime equivalent to the number of configurations to analyze. For

his case study, it was found that the total computation time re-

uired to explore all possible configurations separately was 48.72

in, which is too much greater than 16.24 min that correspond to

he computation time consumed using the proposed approach. 

.1. Results after Maximum Number of Generations (MNG) 

The proposed strategy yields the Pareto sets shown in Fig. 8 ,

here there can be seen the optimal solutions generated accord-

ng to the stochastic procedure of this method corresponding to

he solutions for cases 1 to 3. Due to the methodological strat-

gy proposed in this paper, only a Pareto graph is obtained after

unning the metaheuristic optimization process. This Pareto plot is
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Fig. 8. Results after maximum number of generations for Cases 1 to 3. 
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j  

i  

b  

o  

s

btained starting with the selected decision variables, their values

or the lower and upper bounds and the values for the parameters

ssociated to the used I-MODE algorithm. 

The termination criterion shown in Fig. 8 corresponds to the

esults after Maximum Number of Generations (MNG), which is

he total number of simulations needed to obtain the results. The

ermination criterion corresponding to the MNG refers to a value

pecified by the user in the optimization program interface as a
arameter and tells the algorithm to finish iterating. The graph

hown in Fig. 8 is a Pareto chart where the points shown there

re those obtained from the interaction of the two conflicting ob-

ective functions, each of those points is an optimum, however, it

s up to the decision maker to choose which of them best matches

oth objectives. Values of the search variables correspond to each

f the points shown in Fig. 8 . The results of the search variables

hown in Table 3 correspond to point C. 
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Table 3 

Optimal values for decision variables. 

Case Value Unit Objective Functions 

Reactor 1 Reactor 2 Reactor 3 

Temp Press Temp Press Temp Press F1 F2 

2 Actual 773 3.6 773 3.86 973 4 1.09 7.48 

Optimal 701.12 3.34 752.61 3.76 1394.23 3.60 1.09 6.81 

Percent -9% -7% -3% -3% 43% -10% 0% -9% 
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6.2. Optimal values for search variables 

The I-MODE algorithm gives the Pareto graph according with

the chosen termination criterion. In that graphic, it is possible to

select by the decision maker a point which properly reconciles

both objective functions. Also, it is possible to read the optimal

value for every decision variable in the selected point. Temperature

was expressed in Kelvin and pressure in Mega Pascals. TP is ex-

pressed in millions of US$ per year (MUS$/yr) and TE is expressed

in millions of Tons per year (MTon/yr) 

The optimal values of the selected decision variables after run-

ning the optimization of chosen scenario are shown in Table 3 . 

The best configuration according with this optimization

methodology was the Case 2.The results in the Pareto chart cor-

responding to Case 2 are the points from C to D, that is, all inter-

mediate points between the previous two are optimal solutions of

the configuration represented in Case 2. 

The reason why Case 2 was selected as the configuration with

the best results was that the points corresponding to this equip-

ment arrangement are the ones that best reconcile both objective

functions with intermediate values for both. While in points A and

B that correspond to the configurations of Case 3 and Case 1, re-

spectively, show decreases in the economic objective function, this

means that if they significantly reduce the environmental objec-

tive function (CO 2 emissions fall to 2.08 MTon/yr equal to 72%)

but compromise likewise the profit of the process (net profit fall

to 0.34 MUS$/yr equal to 69%) in point B. While point A exhibits a

net gain of zero, so it is not analyzed in this study. 

6.3. Optimal values for objective functions 

As can be seen in the Pareto graphics after MNG, there are dif-

ferent optimal solutions for this problem. In Fig. 8 , four important

points can be identified (A, B, C and D). Point A has a gross TP

but the minimum value for TE, this point corresponds to Case 3.

In point B can be seen intermediate values for both objective func-

tions, this point corresponds to Case 1. Point C shows the mini-

mum increase in TP with a considerable increase in TE, this set of

points until point D corresponds to optimal solutions obtained in

Case 2. 

Table 3 also shows the values for the objective functions at the

optimal values found for search variables in the selected config-

uration case with the best performance (Case 2).For this purpose,

point C was selected within the set of optimal values that take part

in the solutions of that case because it represents intermediate val-

ues for both objective functions. 

Finally, Table 3 shows the percentage of change for decision

variables and objective functions. A positive percentage represents

an increment of the values and in the same way a negative per-

centage represents a decrement in the values for search variables

and for objective functions. As can be seen in this table, the so-

lutions generated according to the stochastic procedure of this

method does not represent a considerable improvement in the

performance of the economic objective function (TP), however it

presents a reduction in the environmental objective function (TE)
f 0.67 MTon/yr, which is equivalent to reduce 9% the CO 2 emis-

ions. The above is due to the objective of satisfying two contra-

ictory objectives at the same time, so that the optimization al-

orithm will find solutions in which there is a desired value for

 single objective function as well as some intermediate values of

oth. 

.4. Algorithm mechanism analysis 

It should be noticed that the proposed methodology was dis-

lacing the cases with the worst performance, the metaheuristic

ptimization algorithm focused on simulating the most successful

onfigurations. However, in this work a multi-objective optimiza-

ion was incorporated, so the algorithm retained the configura-

ions that had the best performance in the other objective func-

ion. This explains why in the last generation the configurations

ppear with a lower TP (maximization objective), but also with a

ower TE (minimization objective). 

The pareto graph shown in Fig. 8 offers one point for each un-

uccessful configuration (Case 1 and Case 3 for points B and A,

espectively), while for the most successful configuration (Case 2)

t offers seven optimal points (of the which point C). The mech-

nism of the algorithm is described as follows. As the first step

f the algorithm, random values of the search variables are pro-

osed within the limits specified by the user, the values of these

ariables will be subsequently exported to the process simulator

Aspen Plus). The structural configuration of the process is repre-

ented in a simulator file that only differs by a number (from one

o three in this study). As an integer variable corresponding to the

rocess configuration (Case Number) that could change from one

o three was declared, this value is also proposed randomly by the

lgorithm, so a structural configuration is being chosen at the same

ime as values of search variables. As it is an evolutionary algo-

ithm, it will gradually reproduce the simulations of the configu-

ation that offers better values for both objective functions, how-

ver, in the pareto the points corresponding to the less successful

onfigurations will continue appearing because they have similar

xtreme values. Therefore, after a specified number of generations

considering MNG as the selected termination criteria), the algo-

ithm will offer a graph with the points corresponding to the best

alues for the objective functions without the need to simulate the

onfigurations that do not offer a good outcome. In this way, it

aves the computing time that it would take to evaluate each con-

guration with random values and then compare them. 

The optimal solutions are unevenly distributed due to the way

he graph is elaborated. A more detailed description of how the op-

imization algorithm offers the points for the graphical reading can

elp to better understand this behavior. For each of these points,

he minimum is one in one of the axes, that is, it is based on the

inimization of one of the objective functions and with this, the

alues of the other axis are calculated, so that each of the points

hown in the solution graph can be considered as optimal. How-

ver, the decision maker is the one who chooses a single point of

he graph as the best solution which conciliates in the most con-

enient way the performance of both objective functions and that
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hese are usually conflicting. In the same line, it may be that the

olution graph presents a series of points grouped in a zone (such

s the series of points between C and D), which means that it is

n this part where a greater number of solutions have been found

easible. Indeed, the difference between points C to D does not rep-

esent a considerable change in the economic objective function, so

he best option for the decision maker would be to choose point

, since it represents practically the same gain as point D but with

ess CO 2 emissions. 

. Conclusion 

This work has presented a new multi-objective optimization

ethodology where it is possible to optimize the structural config-

ration of the process flow diagram simultaneously with the best

perating conditions. This technique is possible through a code

hat uses the case number of the configuration as an integer vari-

ble, in this way, it is proposed randomly the solution of a partic-

lar configuration with values of the search variables and through

enerations move less successful configurations and search variable

alues are proposed only for the most successful flowsheets. Us-

ng this multi-objective optimization methodology through meta-

euristic techniques, it is possible to considerably reduce the com-

utation time by just simulating the best configurations. 

A case study for the optimal production of silicon grade silane

s presented. Three different process configurations were simulta-

eously optimized. The results obtained in the case study (SGSP)

re attractive for both objective functions, and the computation

ime is almost the third part of the case of optimizing each config-

ration separately. In the addressed case study, the entire annual

missions of CO 2 were reduced between 9% in the Case 2, whereas

he TP presents a constant value, that is, by changing only the op-

rating conditions of the reactor of said configuration, it is possible

o reduce CO 2 emissions and at the same time maintain the same

conomic gains. 

The main contribution of this work is not only the algorithm

sed, but also the strategy of simultaneous optimization of vari-

us possible configurations to displace the least successful ones in

he performance of the objective function. In such a way that the

bjective of this methodology is not to be faster than other meta-

euristic tools, but rather to be faster than using the same algo-

ithm when solving each configuration separately. 

Finally, the proposed approach can address different processes

ecause it is general. The case studies to which this methodology

an be implemented are in those in which multiple configurations

an be chosen. Likewise, it is necessary that the search variables

an be shared in the process flow diagrams to be chosen. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.compchemeng.2020.

06946 . 

RediT authorship contribution statement 

Luis G. Hernández-Pérez: Conceptualization, Investigation, 

ethodology, Writing - original draft. César Ramírez-Márquez: 

onceptualization, Investigation, Writing - original draft. Juan G.
egovia-Hernández: Conceptualization, Funding acquisition, Writ- 

ng - review & editing. José M. Ponce-Ortega: Conceptualization,

unding acquisition, Writing - review & editing. 

eferences 

amufleh, H.S., Ponce-Ortega, J.M., El-Halwagi, M.M., 2013. Multi-objective opti-

mization of process cogeneration systems with economic, environmental, and
social tradeoffs. Clean Techn. Environ. Policy 15 (1), 185–197. doi: 10.1007/

s10098- 012- 0497- y . 
iegler, L.T. , Grossmann, I.E. , Westerberg, A.W. , 1997. Systematic methods for chem-

ical process design. Prentice Hall, United States . 

apitanescu, F., Ahmadi, A., Benetto, E., Marvuglia, A., Tiruta-Barnab, L., 2015. Some
efficient approaches for multi-objective constrained optimization of computa-

tionally expensive black-box model problems. Comput. Chem. Eng. 82, 228–239.
doi: 10.1016/j.compchemeng.2015.07.013 . 

oello-Coello, C.A. , Van-Veldhuizen, D.A. , Lamont, G.B. , 2002. Evolutionary algo-
rithms for solving multi-objective problems. Kluwer Academic, New York, NY . 

osta, L., Oliveira, P., 2001. Evolutionary algorithms approach to the solution of

mixed integer non-linear programming problems. Comput. Chem. Eng. 25 (2–
3), 257–266. doi: 10.1016/S0 098-1354(0 0)0 0653-0 . 

evillers, J. , 1996. Genetic algorithms in molecular modeling. Academic Press, San
Diego, CA . 

iaz-Barriga-Fernandez, A.D., Santibañez-Aguilar, J.E., Nápoles-Rivera, F., Ponce-
Ortega, J.M., 2018. Analysis of the financial risk under uncertainty in the munic-

ipal solid waste management involving multiple stakeholders. Comput. Chem.

Eng. 117, 433–450. doi: 10.1016/j.compchemeng.2018.07.017 . 
íez, E., Rodríguez, A., Gómez, J.M., Olmos, M., 2013. Distillation assisted heat pump

in a trichlorosilane purification process. Chem. Eng. Process. 69, 70–76. doi: 10.
1016/j.cep.2013.02.006 . 

imian, A. , 2003. Integrated design and simulation of chemical processes. Elsevier
ISBN: 97804 4 4829962 . 

omínguez-García, S., Gutiérrez-Antonio, C., Lira-Flores, J.A., Ponce-Ortega, J.M.,
2017. Optimal planning for the supply chain of biofuels for aviation in

Mexico. Clean Technol. Environ. Policy 19 (5), 1387–1402. doi: 10.1007/

s10098- 017- 1337- x . 
ragoi, E.N., Curteanu, S., 2016. The use of differential evolution algorithm for solv-

ing chemical engineering problems. Rev. Chem. Eng. 32 (2), 149–180. doi: 10.
1515/revce-2015-0042 . 

rrico, M., Torres-Ortega, C.E., Rong, B.G., 2017. Integrated synthesis and differential
evolution methodology for design and optimization of distillation processes. In:

Advances in Process Systems Engineering - Differential Evolution in Chemical

Engineering. World Scientific, pp. 230–259. doi: 10.1142/9789813207523 _ 0 0 08 . 
an, J., Xiong, S., Wang, J., Gong, C., 2008. IMODE: Improving multi-objective differ-

ential evolution algorithm. In: 2008 Fourth International Conference on Natural
Computation, 1. IEEE, pp. 212–216. doi: 10.1109/ICNC.2008.97 . 

arrow, R.F.C., 1974. The kinetics of silicon deposition on silicon by pyrolysis of
silane A mass spectrometric investigation by molecular beam sampling. J. Electr.

Soc. 121 (7), 899–907. doi: 10.1016/0040- 6090(79)90341- 9 . 

eraili, A., Sharma, P., Romagnoli, J.A., 2014. A modeling framework for design of
nonlinear renewable energy systems through integrated simulation modeling

and metaheuristic optimization: Applications to biorefineries. Comput. Chem.
Eng. 61, 102–117. doi: 10.1016/j.compchemeng.2013.10.005 . 

onzález-Bravo, R., Mahlknecht, J., Ponce-Ortega, J.M., 2018. Water, food and power
grid optimization at macroscopic level involving multi-stakeholder approach.

Energy Procedia 153, 347–352. doi: 10.1016/j.egypro.2018.10.013 . 

onzález-Bravo, R., Ponce-Ortega, J.M., El-Halwagi, M.M., 2017. Optimal design of
water desalination systems involving waste heat recovery. Ind. Eng. Chem. Res.

56 (7), 1834–1847. doi: 10.1021/acs.iecr.6b04725 . 
onzález, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N., 2010. Nature in-

spired cooperative strategies for optimization (NICSO 2010). Springer, Berlin,
Heidelberg, pp. 65–74. doi: 10.1007/978- 3- 642- 12538- 6 ISBN: 978-3-642-

12537-9. 

ross, B., Roosen, P., 1998. Total process optimization in chemical engineering with
evolutionary algorithms. Comput. Chem. Eng. Eng. 22 (SUPPL. 1), 229–236.

doi: 10.1016/S0098-1354(98)00059-3 . 
rossmann, I.E., Ruiz, J.P., 2012. Generalized disjunctive programming: A framework

for formulation and alternative algorithms for MINLP optimization. In: Lee, J.,
Leyffer, S. (Eds.). Mixed Integer Nonlinear Programming. The IMA Volumes in

Mathematics and its Applications, 154. Springer, New York, NY doi: 10.1007/

978- 1- 4614- 1927- 3 _ 4 . 
utiérrez-Antonio, C., Briones-Ramírez, A., 2010. Speeding up a multiobjective ge-

netic algorithm with constraints through artificial neuronal networks. Comput.
Aided Chem. Eng. Elsevier 28, 391–396. doi: 10.1016/S1570-7946(10)28066-5 . 

arjunkoski, I., Westerlund, T., Pörn, R., Skrifvars, H., 1998. Different transformations
for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105 (3),

594–603. doi: 10.1016/S0377-2217(97)0 0 066-0 . 
ernández-Pérez, L.G., Sánchez-Tuirán, E., Ojeda, K.A., El-Halwagi, M.M., Ponce-

Ortega, J.M., 2019. Optimization of microalgae-to-biodiesel production process

using a metaheuristic technique. ACS Sustain. Chem. Eng. 7 (9), 84 90–84 98.
doi: 10.1021/acssuschemeng.9b00274 . 

ernandez-Perez, L.G., Alsuhaibani, A.S., Radwan, N., El-Halwagi, M.M., Ponce-
Ortega, J.M., 2020. Structural and operating optimization of the methanol pro-

cess using a metaheuristic technique. In press. 10.1021.acssuschemeng.9b05981. 

https://doi.org/10.1016/j.compchemeng.2020.106946
https://doi.org/10.1007/s10098-012-0497-y
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0002
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0002
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0002
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0002
https://doi.org/10.1016/j.compchemeng.2015.07.013
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0004
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0004
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0004
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0004
https://doi.org/10.1016/S0098-1354(00)00653-0
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0006
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0006
https://doi.org/10.1016/j.compchemeng.2018.07.017
https://doi.org/10.1016/j.cep.2013.02.006
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0009
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0009
https://doi.org/10.1007/s10098-017-1337-x
https://doi.org/10.1515/revce-2015-0042
https://doi.org/10.1142/9789813207523_0008
https://doi.org/10.1109/ICNC.2008.97
https://doi.org/10.1016/0040-6090(79)90341-9
https://doi.org/10.1016/j.compchemeng.2013.10.005
https://doi.org/10.1016/j.egypro.2018.10.013
https://doi.org/10.1021/acs.iecr.6b04725
https://doi.org/10.1007/978-3-642-12538-6
https://doi.org/10.1016/S0098-1354(98)00059-3
https://doi.org/10.1007/978-1-4614-1927-3_4
https://doi.org/10.1016/S1570-7946(10)28066-5
https://doi.org/10.1016/S0377-2217(97)00066-0
https://doi.org/10.1021/acssuschemeng.9b00274


12 L.G. Hernández-Pérez, C. Ramírez-Márquez and J.G. Segovia-Hernández et al. / Computers and Chemical Engineering 140 (2020) 106946 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R  

 

 

R  

 

 

R  

 

S  

S  

 

 

S  

S  

S  

S  

 

S  

 

T  

 

T  

W  

 

 

Y  

Y  

 

 

Ho-Huu, V., Hartjes, S., Visser, H.G., Curran, R., 2018. An improved MOEA/D al-
gorithm for bi-objective optimization problems with complex Pareto fronts

and its application to structural optimization. Expert Syst. Appl. 92, 430–446.
doi: 10.1016/j.eswa.2017.09.051 . 

Husain, A. , 1986. Chemical process simulation, 247. John Wiley and Sons, New York,
NYUSA ISBN 0-470-20201-7 . 

Jang, W.H., Hahn, J., Hall, K.R., 2005. Genetic/quadratic search algorithm for plant
economic optimizations using a process simulator. Comput. Chem. Eng. 30 (2),

285–294. doi: 10.1016/j.compchemeng.20 05.09.0 07 . 

Lang, Y.D., Biegler, L.T., 1987. A unified algorithm for flowsheet optimization. Com-
put. Chem. Eng. 11 (2), 143–158. doi: 10.1016/0 098-1354(87)80 014-5 . 

Lim, Y.I., Floquet, P., Joulia, X., Kim, S.D., 1999. Multiobjective optimization in terms
of economics and potential environment impact for process design and analysis

in a chemical process simulator. Ind. Eng. Chem. Res. 38 (12), 4729–4741. doi: 10.
1021/ie990225m . 

Martin-Martin, M. , 2019. Introduction to software for process simulation. CRC Press,

USA ISBN: 978-1138324220 . 
Miranda-Galindo, E.Y., Segovia-Herna ́ndez, J.G., Herna ́ndez, S., Bonilla-Petriciolet,

2014. A. multiobjective optimization of a hydrodesulfurization process of diesel
using distillation with side reactor. Ind. Eng. Chem. Res. 53 (42), 16425–16435.

doi: 10.1021/ie501940v . 
Najim, K. , Ikonen, E. , Daoud, A.K. , 2004. Stochastic processes. Elsevier ISBN:

9781903996553 . 

Núñez-López, J.M., Rubio-Castro, E., El-Halwagi, M.M., Ponce-Ortega, J.M., 2018. Op-
timal design of total integrated residential complexes involving water-energy-

waste nexus. Clean Technol. Environ. Policy 20 (5), 1061–1085. doi: 10.1007/
s10098- 018- 1537- z . 

Pérez-Lombard, L., Ortiz, J., Pout, C., 2008. A review on buildings energy consump-
tion information. Energy Build. 40 (3), 394–398. doi: 10.1016/j.enbuild.2007.03.

007 . 

Pimentel, D., Harman, R., Pacenza, M., Pecarsky, J., Pimentel, M., 1994. Natural re-
sources and an optimum human population. Popul. Environ. 15 (5), 347–369.

doi: 10.1007/BF02208317 . 
Ponce-Ortega, J.M. , Hernández-Pérez, L.G. , 2019. Optimization of process

flowsheets through metaheuristic techniques. Springer, Switzerland ISBN
978-3-319-91722-1 . 

Ponce-Ortega, J.M., Jiménez-Gutiérrez, A., Grossmann, I.E., 2008. Simultaneous

retrofit and heat integration of chemical processes. Ind. Eng. Chem. Res. 47 (15),
5512–5528. doi: 10.1021/ie071182 . 

Ponce-Ortega, J.M. , Santibañez-Aguilar, J.E. , 2019. Strategic planning for the sus-
tainable production of biofuels. Elsevier, Oxford, United Kingdom ISBN10:

0128181788 . 
Quiroz-Rami ́rez, J.J., Sánchez-Rami ́rez, E., Hernández, S., Ramírez-Prado, J.H.,

Segovia-Hernández, J.G., 2017. Multiobjective stochastic optimization approach

applied to a hybrid process production–separation in the production of biobu-
tanol. Ind. Eng. Chem. Res. 56 (7), 1823–1833. doi: 10.1021/acs.iecr.6b04230 . 

Ramírez-Márquez, C., Contreras-Zarazúa, G., Martín, M., Segovia-Hernández, J.G.,
2019. Safety, economic, and environmental optimization applied to three pro-

cesses for the production of solar-grade silicon. ACS Sustain. Chem. Eng. 7 (5),
5355–5366. doi: 10.1021/acssuschemeng.8b06375 . 
amírez-Márquez, C., Otero, M.V., Vázquez-Castillo, J.A., Martín, M., Segovia-
Hernández, J.G., 2018a. Process design and intensification for the production of

solar grade silicon. J. Clean. Prod. 170, 1579–1593. doi: 10.1016/j.jclepro.2017.09.
126 . 

amírez-Márquez, C., Otero, M.V., Va ́zquez-Castillo, J.A., Marti ́n, M., Segovia-
Hernández, J.G., 2018b. Process design and intensification for the production of

solar grade silicon. J. Clean. Prod. 170, 1579–1593. doi: 10.1016/j.jclepro.2017.09.
126 . 

anjan, S., Balaji, S., Panella, R.A., Ydstie, B.E., 2011. Silicon solar cell production.

Comput. Chem. Eng. 35 (8), 1439–1453. doi: 10.1016/j.compchemeng.2011.04.017 .
andler, S.I. , 2015. Using Aspen Plus in thermodynamics instruction, 1st edn. Wiley,

Hoboken, NJ . 
antibañez-Aguilar, J.E., González-Campos, J.B., Ponce-Ortega, J.M., Serna-

González, M., El-Halwagi, M.M., 2014. Optimal planning and site selection for
distributed multiproduct biorefineries involving economic, environmental and

social objectives. J. Clean. Prod. 65, 270–294. doi: 10.1016/j.jclepro.2013.08.004 . 

chlueter, M., 2009. MIDACO-Global Optimization Software for Mixed Integer Non-
linear Programming. 

chlüter, M., Egea, J.A., Banga, J.R., 2009. Extended ant colony optimization for non-
convex mixed integer nonlinear programming. Comp. Oper. Res. 36 (7), 2217–

2229. doi: 10.1016/j.cor.2008.08.015 . 
egovia-Hernández, J.G., Gómez-Castro, F.I., 2017. Stochastic process optimization

using Aspen Plus®. CRC Press, Boca Raton doi: 10.1201/9781315155739 . 

harma, S., Rangaiah, G.P., 2013. An improved multi-objective differential evolution
with a termination criterion for optimizing chemical processes. Comput. Chem.

Eng. 56, 155–173. doi: 10.1016/j.compchemeng.2013.05.004 . 
harma, S. , Rangaiah, G.P. , 2016. Mathematical modeling simulation and optimiza-

tion for process design. In: Rangaiah, G.P. (Ed.), Chemical process retrofitting
and revamping: Techniques and applications. Wiley, Singapore, pp. 99–128 . 

ang, Y., Reed, P.M., Kollat, J.B., 2007. Parallelization strategies for rapid and robust

evolutionary multiobjective optimization in water resources applications. Adv.
Water Resour. 30 (3), 335–353. doi: 10.1016/j.advwatres.2006.06.006 . 

ejero-Ezpeleta, M.P., Buchholz, S., Mleczko, L., 2004. Optimization of reaction con-
ditions in a fluidized-bed for silane pyrolysis. Can. J. Chem. Eng. 82 (3), 520–

529. doi: 10.1002/cjce.5450820313 . 
ong, J.Y.Q., Sharma, S., Rangaiah, G.P., 2016. Design of shell-and-tube heat ex-

changers for multiple objectives using elitist non-dominated sorting genetic al-

gorithm with termination criteria. Appl. Therm. Eng. 93, 888–899. doi: 10.1016/
j.applthermaleng.2015.10.055 . 

ang, X.S. , 2014. Nature-inspired optimization algorithms. Elsevier ISBN:
978-0-12-416743-8 . 

eomans, H., Grossmann, I.E., 1999. A systematic modeling framework of super-
structure optimization in process synthesis. Comput. Chem. Eng. 23 (6), 709–

731. doi: 10.1016/S0 098-1354(99)0 0 0 03-4 . 

Zhao, Q. , Thibaut, N. , Mecheri, M. , Privat, R. , Guittard, P. , Jaubert, J.N. , 2018. Su-
perstructure optimization (MINLP) within ProSimPlus simulator. Comput.Chem.

Eng. 43, 767–772 10.1016/B978-0-4 4 4-64235-6.50135-2 . 

https://doi.org/10.1016/j.eswa.2017.09.051
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0025
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0025
https://doi.org/10.1016/j.compchemeng.2005.09.007
https://doi.org/10.1016/0098-1354(87)80014-5
https://doi.org/10.1021/ie990225m
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0029
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0029
https://doi.org/10.1021/ie501940v
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0031
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0031
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0031
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0031
https://doi.org/10.1007/s10098-018-1537-z
https://doi.org/10.1016/j.enbuild.2007.03.007
https://doi.org/10.1007/BF02208317
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0035
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0035
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0035
https://doi.org/10.1021/ie071182
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0037
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0037
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0037
https://doi.org/10.1021/acs.iecr.6b04230
https://doi.org/10.1021/acssuschemeng.8b06375
https://doi.org/10.1016/j.jclepro.2017.09.126
https://doi.org/10.1016/j.jclepro.2017.09.126
https://doi.org/10.1016/j.compchemeng.2011.04.017
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0043
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0043
https://doi.org/10.1016/j.jclepro.2013.08.004
https://doi.org/10.1016/j.cor.2008.08.015
https://doi.org/10.1201/9781315155739
https://doi.org/10.1016/j.compchemeng.2013.05.004
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0048
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0048
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0048
https://doi.org/10.1016/j.advwatres.2006.06.006
https://doi.org/10.1002/cjce.5450820313
https://doi.org/10.1016/j.applthermaleng.2015.10.055
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0052
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0052
https://doi.org/10.1016/S0098-1354(99)00003-4
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0054
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0054
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0054
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0054
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0054
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0054
http://refhub.elsevier.com/S0098-1354(19)31240-2/sbref0054

	Simultaneous structural and operating optimization of process flowsheets combining process simulators and metaheuristic techniques: The case of solar-grade silicon process
	1 Introduction
	2 General optimization approach
	3 Solar-grade silicon process
	3.1 Siemens process
	3.2 Intensified FBR union carbide process
	3.3 Hybrid process

	4 Computational model formulation
	4.1 Simulated process configuration
	4.2 Total profit objective function
	4.3 Total emissions objective function

	5 Optimization strategy
	5.1 Optimization algorithm
	5.2 Decision variables
	5.3 Constraints
	5.4 Parameters associated to the used algorithm

	6 Results and discussion
	6.1 Results after Maximum Number of Generations (MNG)
	6.2 Optimal values for search variables
	6.3 Optimal values for objective functions
	6.4 Algorithm mechanism analysis

	7 Conclusion
	Declaration of Competing Interest
	Supplementary materials
	CRediT authorship contribution statement
	References


