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This paper presents a new optimization approach for the simultaneous structural optimization of process
flowsheets with the operating conditions through combining process simulators with metaheuristic tech-
niques. The proposed approach allows optimization of a superstructure in process simulators and reduce
the computation time. A superstructure for different configurations for producing solar-grade silicon is
considered, which includes three different configurations for solar-grade silicon production (Siemens Pro-
cess, Intensified FBR Union Carbide Process, and Hybrid Process). The operating conditions with major
impact in the performance of each of the proposed configuration were considered as decision variables.
The improved multi-objective differential evolution (I-MODE) algorithm was selected as search method
from others metaheuristic techniques because its efficiency to solve multi-objective problems in a short
central process unit (CPU) time. The optimization algorithm consists in linking the process simulator
software Aspen Plus™ with the metaheuristic technique. The results offered attractive options for the
considered objective functions in the addressed case study.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The proper use of natural and energy resources has gained
a fundamental relevance to satisfy the demands of the mod-
ern lifestyle in current population growth (Pérez-Lombard, 2008).
Therefore, it is necessary to propose optimization strategies where
it is guaranteed that the limited resources are used in the best
possible way (Pimentel et al., 1994). Many alternative solutions
have been proposed to reduce the environmental problem through
the study of different industrial processes (Bamufleh et al., 2013),
supply chains (Dominguez-Garcia et al., 2017), habitational com-
plexes (Nifiez-Lopez et al., 2018), solid waste management (Diaz-
Barriga-Fernandez, 2018), distributed multiproduct biorefineries
(Santibafiez-Aguilar et al, 2014) and water, food and power grids
(Gonzalez-Bravo et al., 2018), among others.

The traditional optimization for the production processes usu-
ally involves the simultaneous selection of the flowsheet as well
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as the corresponding operating conditions (Gonzalez-Bravo et al.,
2017). The optimization techniques that are currently used in
all these studies are based on mathematical programing (Ponce-
Ortega et al., 2008) and deterministic optimization (Ponce-Ortega
& Santibafiez-Aguilar, 2019), whose formulation usually corre-
sponds to mixed-integer non-linear programming problems (Costa
&Oliveira, 2001) that are formulated based on a superstructure
(Yeomans & Grossmann, 1999) through disjunctive programming
formulations (Grossmann & Ruiz, 2012).

Mathematical programming techniques have as main limitation
the availability to produce optimal solutions in non-convex prob-
lems (Coello-Coello et al., 2002), and frequently is not possible
even to find a feasible solution (Devillers, 1996). The involved re-
lationships in simulating the units in chemical and process indus-
tries frequently involve high non-linear and non-convex formula-
tions (Harjunkoski et al., 1998); therefore, process simulators have
included alternative solution approaches through sequential mod-
ular strategies (Sandler, 2015), where the involved units are simu-
lated sequentially to find a feasible solution (Biegler et al., 1997).
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Nomenclature

CF Crossover Fraction

ChiTC Chi-square Termination Criteria

CPU Central Process Unit

DE Differential Evolution

EP Entire Production

F Mutation Fractions

F1 Emissions Factor (1.3 Ib/btu)

F2 Efficiency Factor (0.85)

I-MODE Improved Multi Objective Differential Evolution

MIDACO Mixed Integer Distributed Ant Colony Optimization

MINLP  Mixed-Integer Non-Linear Programming

MNG Maximum Numbers of Generations

MOEA/D Multi-Objective Evolutionary Algorithm based on
Decomposition.

NA Not apply

PS Population Size

SP Sale Price

SSTC Steady State Termination Criteria

TE Entire CO, Emissions

TI Total Income

TLS Taboo List Size

TP Total Profit

TR Taboo Radius

VBA Visual Basic for Applications

This way, very powerful process simulators are available to sim-
ulate different types of processes (Dimian, 2003) including chemi-
cal processes (Husain, 1986); however, the main limitation of these
process simulators is that only a specific process (specific units
and their interconnections) can be analyzed but the optimization
is not allowed (Martin-Martin, 2019) because the involved units
are considered as black-boxes (Capitanescu et al., 2015), whose
relationships cannot be manipulated. Recently, process simulators
have incorporated optimization tools, where in addition to a sen-
sitivity analysis it is possible to establish some objective functions.
However, these optimization tools incorporated in commercial sim-
ulation software are usually very limited (Segovia-Hernandez &
Gomez-Castro, 2017) because allow the manipulation of a single
degree of freedom, mono-objective and local optimization (lim-
ited optimization tools) and the main disadvantage implies that
the structural optimization is not allowed (Gutiérrez-Antonio &
Briones-Ramirez, 2010).

To improve the performance of the used optimization tools in
the commercial process simulators (Najim et al., 2004), the use
of metaheuristic algorithms (Sharma & Rangaiah, 2016), nature in-
spired cooperative strategies (Gonzalez et al., 2010) and nature-
inspired optimization algorithms (Yang, 2014) through external
links with process simulators has been proposed (Hernandez-
Pérez et al, 2019); this way, several metaheuristic approaches
have been considered such as genetic/quadratic search algorithm
(Jang et al., 2005) and parallelization strategies for rapid and ro-
bust evolutionary multi-objective optimization (Tang et al., 2007)
together with different process simulators (Lim et al., 1999).

Differential Evolutionary (DE) is an evolutionary algorithm
that was developed to handle optimization problems. DE algo-
rithm has been used for solving chemical engineering problems
(Dragoi & Curteanu, 2016). For example, Errico et al. (2017) in-
tegrated synthesis and differential evolution in a methodology
for design and optimization of distillation processes, Miranda-
Galindo et al. (2014) used stochastic multi-objective optimiza-
tion algorithms to hydrodesulfurization process of diesel, Quiroz-
Ramirez et al. (2017) applied a multi-objective stochastic optimiza-

tion to a hybrid process production-separation in the production of
biobutanol, Wong et al. (2016) used elitist non-dominated sorting
genetic algorithm with termination criteria to design of shell-and-
tube heat exchangers for multiple objectives, Ho-Huu (2018) re-
ported an improved Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) for bi-objective optimization prob-
lems with complex Pareto fronts applicated to structural optimiza-
tion. Hernandez-Perez et al. (2020) optimized the methanol pro-
duction process from shale gas using an evolutionary algorithm.
However, the main limitation that only the operating conditions
are optimized still remind.

Simultaneous optimization of discrete structures with process
operating conditions is well-studied in literature. For example,
Grooss and Roosen (1998) proposed process optimization using
evolutionary algorithms; however, hybrid optimization algorithms
based on differential evolution have been developed to be more
efficient in solving problems in which conventional metaheuristic
tools can be trapped in a local optimum or consumed too much
computing time. On the other hand, the direct search methods
mentioned by Lang and Biegler (1987), such as SQP (Successive
Quadratic Programing), are a class of methods for finding a lo-
cal optimum to nonlinear constrained optimization problems, but
nonlinear programming does not guarantee the solution of highly
non-convex problems. Likewise, the metaheuristic design frame-
work by Geraili et al. (2014) presented a modeling approach for
designing energy systems applicated to biorefineries; however, it
did not include a strategy for the optimization of multiple simula-
tions in which different configurations of the process flowsheet is
possible.

Zhao et al. (2018) proposed a superstructure optimization
within ProSimPlus simulator using an external metaheuristic op-
timizer called Mixed Integer Distributed Ant Colony Optimiza-
tion (MIDACO). ProSimPlus is a process engineering software that
performs rigorous mass and energy balance calculations for a
wide range of industrial steady-state processes (prosim.net). How-
ever, it is a little known and less used commercial simulator
compared to Aspen Plus. MIDACO is a global optimization soft-
ware (Schlueter, 2009) based on extended ant colony optimiza-
tion (Schliiter et al., 2009) for non-convex Mixed-Integer Non-
Linear Programming (MINLP). On the other hand, Improved Multi-
objective Differential Evolution (I-MODE) is a new approach to
solve multi-objective optimization based on basic DE (Sharma and
Rangaiah, 2013). DE is a simple algorithm, but it has been suc-
cessfully applied to selected real world multi-objective problems
(Fan et al,, 2008). The I-MODE algorithm is equipped with contour
line to select candidate individuals, and combines with the crowd-
ing distance sorting and Pareto-based ranking, and epsiv domi-
nance. The I-MODE code is developed in Visual Basic for Applica-
tion (VBA), so it can be easily manipulated since Micosoft™ Excel.

One important point is that the linking between process simu-
lators usually allows optimizing the operating conditions, and the
main contribution of the present optimization approach is to com-
bining process simulators with metaheuristic techniques for simul-
taneous optimization of process flowsheets with the correspond-
ing operating conditions. This paper proposes a method through
which it is possible to analyze simultaneously multiple configura-
tions of the same process; this way, it can find the optimal solution
without the need of simulating each case with every set of values.
This implies a considerable saving in the computational time since
only the configurations with the best performance will take part in
next generations displacing the configurations with the worst ob-
jective function values. In a conventional way to search an optimal
solution, it is necessary to simulate each configuration with pos-
sible sets of values until a termination criterion is reached, which
consumes a considerable computational time. However, with the
method proposed here, it is possible to find the best operating val-
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Fig. 1. Conventional single-case optimization framework.

ues in the best configuration in the equivalent computation time to
perform the search in a single case.

The Solar-Grade Silicon Process (SGSP) was selected as case
study to use the proposed optimization method, where different
configurations of the same process can be optimized simultane-
ously to determine the optimal structure and operating conditions.
The case of the solar-grade silicon production process is not very
large in terms of the number of possible configurations; however,
it is very useful to explain the proposed methodology and follow
the manipulation of the variables and present the necessary code
for the call of the files that contain the simulation. The difference
between each configuration depends on the order for units, the
connection for streams and the used technology. The SGSP involves
different stages and there are several alternatives for the produc-
tion of this silicone. The most important ones are the Siemens
Process, the Intensified FBR Union Carbide Process, and the Hy-
brid Process, each of which has been analyzed and previously re-
ported (Ramirez-Marquez et al., 2019). However, these previous
works have focused on the design part of the separation columns
without considering the search for the best operating conditions
of the involved reactors. Although the SGSP has been previously
addressed, in this work the simultaneous structural and operating
conditions for the considered process are optimized to reduce the
computational time and improve the obtained solutions through a
new methodology.

2. General optimization approach

In a general way, the reported optimization approaches for pro-
cess flowsheets through metaheuristic strategies consist in link-
ing a process flow diagram previously specified in a commercial
simulation program, and subsequently, using a controller program,
search variable values are exported to the simulator and the re-
sponse variable values are imported after running the simulation
(as shown in Fig. 1). A search variable (also called a decision vari-
able) is one whose specification exhausts a degree of freedom in
the mathematical model in the process simulator, the value will
be randomly changed by the algorithm in order to explore bet-
ter solutions. A response variable is one that is obtained as a re-
sult of the operations that correspond to the mathematical model
of the process simulator and its value is dependent on the value
of the search variables. The strategy of a stochastic optimization
algorithm is to manipulate the value of the search variables and
evaluate the performance (through objective functions) of the cor-
responding value of the response variables.

If exists more than one configuration option in the process, that
is, if it is possible to choose between different configurations, it is
necessary to optimize each of these options separately and then
compare them to choose the one that best meets the considered
objectives (see Fig. 2). This strategy leads to problems inherent in
the manipulation of different cases or configurations since each of

Objective Function Initial
& Constraints Values
|
A\ 4 A 4
Op e Op e Optim
Response ‘ ‘ ‘ Decision
Variables Optimal Optimal Optimal Variables
Design 1 Design 2 Design 3

Fig. 2. Optimization framework where multiple configurations are possible.

Initial
Values

Optimal
Design

I Optimizer I

Decision
Variables

Objective Function
& Constraints

Fig. 3. Multi-case optimization framework.

them requires the algorithm specifications and the creation of a
code for linking the process simulator with the optimization algo-
rithm. Therefore, it is inevitable to infer that the computation time
is greater in at least as many times as different configurations of
the process exist.

The simulation would fail in some operating condition but suc-
cess in others, this is determined which continues and which is
discarded by evaluating the performance of the objective functions.
Each evaluation corresponds to a particular set of values of the de-
cision variables proposed randomly by the optimization algorithm.
The performance of each set of values is evaluated and, in the way
that an evolutionary algorithm proceeds, only the best performing
solutions can generate offspring. As in any evolutionary algorithm,
part of the values that make up the proposed solution set, will be
used to generate a new set of values and be evaluated again in the
next iteration.

In this paper, a new optimization strategy is proposed for the
selection of the best process flowsheet when multiple configu-
rations are possible. This strategy simultaneously optimizes the
structural configuration for the flowsheet and the operating con-
ditions (Fig. 3). This optimization method is based on the use of
different cases to find the optimum values for the selected deci-
sion variables and, at the same time, the selection of the best pro-
cess configuration. In this method, the case number of the process
configuration (simulation case) is treated as a decision variable. In
this way, the simulation case takes part in the solution vector as a
chromosome. It is possible using a code instruction in which part
of the simulation file path is a number. This number is declared
in the algorithm as an integer variable (Fig. 4). An integer variable
is one that can only acquire a value of an integer number, that is,
defined without including decimals or fractions (for example, one,
two, three, etc.).

The optimization problem presented in this new strategy is a
multi-objective one, this way, it can be implemented the opti-
mization to obtain a pareto solution in the stipulated optimization
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Fig. 4. Multi-case optimization solution.

range; however, this solution strategy corresponds to the classical
approaches for addressing these types of problems, the above leads
to the inherent complications in these methodologies, which as ex-
plained, involve excessive computing time and complicated manip-
ulation of both the optimization algorithm and the necessary codes
to link the programs. The reason why different cases are specified
(Case 1 to Case 3) is not because this is the number of optimal
solutions, but that each of these configurations corresponds to a
different alternative solution to the process flowsheet configura-
tion. However, it is not known which of these options represents
the best performance of the objective functions, and which is the
best value of the variables that can be manipulated in the process.
That is why the proposed strategy addresses the selection of the
process configuration and simultaneously searches for the optimal
values of the operating conditions (search variables).

Using the code shown in Fig. 4, the algorithm will randomly
propose a case number to be solved, and will export the values
of the search variables to it. If this is a successful configuration, it
will simulate a greater number of times than cases that are not. In
this way, a selection of the best process flow diagram is obtained
in less computation time.

3. Solar-grade silicon process

The main contribution consists in a general optimization strat-
egy based on metaheuristic tools and commercial process simu-
lators. The reason why the details of the case study (solar-grade
silicon process) are exhaustively addressed is because it is neces-
sary to understand the nature and impact of the search variables
selected for the optimization model. In this way, it would be pos-

sible to associate equally relevant variables for the performance of
the objective functions established in other case studies.

The alternatives to produce solar-grade silicon are the Siemens
process, the intensified FBR Union Carbide process, and the hybrid
process. These processes are described as follows.

3.1. Siemens process

This process uses SiO, as raw material. The first stage is to pro-
duce metallurgic silicon via SiO, reduction with coal. An electric
arc furnace is the unit used for this transformation (Ranjan et al.,
2011). The purity achieved for metallurgic grade silicon, Si(MG),
is around 98-99%. Si(MG), H, and HCI are fed to a fluidized bed
for the production of chlorosilanes. The exit stream is fractionated.
Hydrogen (H,) and hydrogen chloride (HCl) are removed when
chlorosilanes condense. Then, a distillation column is used to split
the liquid stream of SiHCl3 and SiCly. The bottoms, SiCly, consist
of a byproduct of the process while from the top a stream 99.99%
SiHCl3 is obtained (Diez et al., 2013). This revision is sufficient to
feed the stream to the chemical vapor deposition reactor of the
Siemens Process. The production of solar grade silicon uses SiHCl3
and hydrogen via chemical vapor deposition. U shape bars of ul-
trapure silicon are used as seed. These bars are heated up using
electric energy. After silicon deposition, byproducts of HCl, H, and
SiCl, are obtained. Silicon is cooled down with an exchanger to
ambient temperature and the gases are separated by a set of pro-
cess units to be recycled to the process. The siemens process flow-
sheet is shown in Fig. 5.
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Fig. 5. Solar-grade silicon production process.Siemens Process Flowsheet.

3.2. Intensified FBR union carbide process

The stage to obtain Si(MG) is the same as for the Siemens Pro-
cess. The Si(MG) is hydrogenated together with SiCl4 in a fluidized
bed reactor. The stream of products is separated using a flash mod-
ule to remove the chlorosilanes. Afterwards, the stream consisting
mainly of trichlorosilane and tetrachlorosilane is fed to a system of
two distillation columns. A high purity stream of SiCly is obtained
from the bottoms of the first column, which is recycled. From the
other column, a high purity trichlorosilane stream is obtained from
the bottoms that are fed to a reactive distillation column. Next,
trichlorosilane disproportion reactions are carried out in a reactive
distillation column. High purity trichlorosilane is fed to the new in-
tensified process, the reactive distillation system. The column pro-
duces high purity silane over the top that is fed to the chemical
vapor deposition reactor to produce high purity silicon and hy-
drogen (Farrow, 1974). It is modeled on a stoichiometric reactor
where the silane conversion reaches 80% (Tejero-Ezpeleta, 2004).
The product stream is separated to isolate the polysilicon from the
gases. Polysilicon is solidified while the gases, mainly H, and HCI,
are recycled. The intensified FBR union carbide process flowsheet
is shown in Fig. 6.

3.3. Hybrid process

The production of Si(MG) is carried out, as in previous cases,
by means of the carboreduction of SiO,. Then, an FBR is used for
the hydrogenation of Si(MG) and SiCl, to obtain a mixture of di,
tri and tetrachlorosilane. Next, two distillation columns are used
to separate the mixture of chlorosilanes. From the top of the first
column, there is obtained di and trichloro silane, while from the
bottoms a mixture of tetrachlorosilane with traces of SiHCls is ob-
tained. SiHCl3 is removed and the tetrachlorosilane is recycled to
the process. The second column separates the mixture of SiHCl,
and SiHCl;, and obtained from the bottom SiHCl; of high purity.
After that, SiHCl3 is used as feed for the chemical Siemens vapor
deposition reactor. Next of the deposition, HCl and hydrogen are

separated from the Si(SG). Then, both streams are cooled down.
The hybrid process flowsheet is shown in Fig. 7.

4. Computational model formulation

A model formulation based on a process simulation software
was implemented in this methodology to obtain the best values
for the selected decision variables. The different configurations for
flowsheets of the process were introduced to the process simulator
platforms. Likewise, the initial values of the decision variables, the
thermodynamic models, and units were specified, and the absence
of errors or warnings were corroborated running every simulation.
The proposed methodology can solve this type of problems where
it is necessary to choose from different options for the configura-
tion of the same process and at the same time find the best oper-
ating conditions or design specifications.

The performance of every set of values in each configuration
is determined by objective functions. The objective function is ex-
pressed in an equation whose value is maximized or minimized
depending on its "desirability”. This equation is calculated using
the values of the response variables that are obtained from the
process simulator after running a simulation with the given values
of the search variables, that is, the optimizer program will propose
values for the decision variables according to its algorithm until
the best possible value of the objective functions is obtained.

In the case study that was selected to apply this optimization
strategy, two objective functions were selected, an economic ob-
jective function (in order to be maximized) and an environmental
objective function (in order to be minimized). These two objective
functions are conflicting with each other, so as will be seen in the
discussion of results, the best solution of one offers the worst al-
ternative of the other.

4.1. Simulated process configuration

The addressed processes by Ramirez-Marquez et al., 2018a were
the Siemens, Intensified FBR Union Carbide Process and Hybrid
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Fig. 6. Solar-grade silicon production process. Intensified FBR union carbide process Flowsheet.

Process. The procedure to construct the corresponding process
flowsheets was described by Ramirez-Marquez et al., 2018b, and
these initial flowsheets are used in this paper to construct the cor-
responding superstructure to simultaneously optimize the struc-
ture and operating conditions for the process. These flowsheets
were implemented in the process simulator Aspen Plus™ V8.8,
this because the available units required in the simulation, the
thermodynamic models as well as the rigorous solution approach
for analyzing processes. Aspen Plus™ is a commercial process
simulator widely used for simulation processes, were the imple-
mented approach considers zero degrees of freedom and sequen-
tial modular simulations are implemented to analyze processes.
Aspen Plus™ works in a "closed box" procedure resolving the
problem of process simulation without offering the user the possi-
bility of manipulating the used equations to obtain the presented
results.Likewise, this process simulator has some optimization op-
tions, however it consists of a very basic single variable optimiza-
tion tool, and the main limitation is that this does not allow the
structural optimization. Due to the above, in this paper is proposed
an optimization strategy that allows the linking of both search
variables and response variables as data that is used in an exter-
nal metaheuristic optimization algorithm able to work with black
box models like the ones of Aspen Plus™ or any other modular se-
quential process simulator. This way, a superstructure that consists
of these three processes for solar-grade silicon production was im-
plemented in Aspen Plus™, this consists of the Siemens Process,
the Intensified FBR Union Carbide Process, and the Hybrid Process.
All degrees of freedom were exhausted as data requested by the
process simulator program in an initial run, such values are desig-
nated as current values.

After the simulation of each of the processes with proposed val-
ues, some of the degrees of freedom (data requested by the process
simulator software) were selected as search optimization variables
or decision variables, that is, data that would be manipulated by
the optimization algorithm until finding the values with which the
best results of two objective functions would be obtained, which
are described below.

4.2. Total profit objective function

The economic objective function consists in maximizing the to-
tal profit (TP), which is defined as the entire gain that is obtained
after subtracting what is necessary to invest a profit. TP can be cal-
culated with the total income (TI) minus the total cost (TC), Eq. 1.
TI means the profits in a year obtained by selling the product and
can be directly calculated from the total annual production (TP)
multiplying by a sale price (SP), Eq. 2. TP is calculated using a re-
sponse variable, the silicon production expressed in lIb/h and mul-
tiplying by operating hours in a day (24 hours) and the labored
days in a year (360 days). A SP value of 0.72 US$/Ib is assumed
based on what is reported in digital databases.

TP = Total Profit =TI —TC (1)

TI = Total Income = TP - SP (2)

Where EP = Total Production = Production (%) . 24(%) .

d ; us
360(W)and SP = Sale Price = O.72(k—g).

3)

TC represents the sum of the costs involved in the production
of the product, in this study two mainly were considered: the cost
of the utilities and the depreciations for each process. The depre-
ciation considers equipment costs. Table 1 shows the capital cost,
the cost of utilities and depreciations. Depreciations were calcu-
lated considering a utile life of ten years for the plant in each pro-
cess. The values presented in Table 1 were obtained by the Aspen
Process Economic Analyzer (APEA) at current values for each case.

The economic objective function TP is calculated by the set
of Egs. 1 to 3 starting with the response variables (EP) ob-
tained by Aspen Plus™., TP is expressed in millions of US$ per
year (MUS$/yr), which is obtained multiplying the production by
1 x 105 $/MS.

TC = Total Cost = Utilities + Depreciations
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Fig. 7. Solar-grade silicon production process.Hybrid Process Flowsheet.

Table 1
Results for the total annual cost.

Process Capital (MMUS$)  Utilities (MMUS$/YR)  Depreciation (MMUS$/YR)
Siemens 4.73886 0.427862 0.473886

Intensified FBR Union Carbide  20.7769 1.36862 2.07769

Hybrid 6.09487 0.893691 0.609487

4.3. Total emissions objective function

A second objective function has been considered, which in-
volves environmental aspects. Environmental objective function
consists in minimizing the total CO, emissions (TE) (Eq. 4) asso-
ciated with the heating (btu/h) needed in the reactors of each pro-
posed configuration, which acts as a response variable.

5
TE = Total Emissions = ZRH(’;?) -24(Z> -360<;1r> (4)
n=1

Where R, corresponds to CO, emissions by Reactor «n» (Ib/h).

It was used the US-EPA-Rule-E9-5711 as CO, emission factor
data source (F1) with a value of 2.34 x10~7 kg/cal for Natural Gas
as ultimate fuel source. The CO, energy source efficiency factor
(F2) is of 0.85, which corresponds to CO, emissions associated with
the fuel needed to obtain high temperature by a fired heat. The
CO, emissions are directly proportional to the needed heat (Q) as-
sociated to reactor «n» obtained by the simulator calculations. The
R value is calculated using Eq. 5.

3
R = CO, emissions = ZQ,,(Chal) -F1 ((ﬁi) -F2. 24(2)

n=1

d
360 (yr> (5)

TE is expressed in millions of Tons per year (MTon/yr) multiply-
ing the TE (kg/yr) by 1 x 10~6 MTon/kg.

5. Optimization strategy

Metaheuristic optimization methods are attractive for solv-
ing complex, high nonlinear and potentially nonconvex problems
(Ramirez-Marquez et al., 2018a). In this paper, it has been pro-
posed a new methodology of multi-objective optimization that al-
lows to simultaneously analyze a set of different configurations of
the same process in order to find the best one while finding the
optimal operating conditions. This strategy is based on adding the
case number of a process configuration as an entire variable, in
this way the case number participates in the evolutionary process
of selecting the best conditions. Analyzing the configurations at the
same time that the operating conditions and design specifications
have multiple advantages, the main one is that the evolutionary
algorithm will gradually discard the less successful process config-
urations for given objective functions and thus consume less com-
putational resources in simulating configurations in which the op-
timum is not found.

5.1. Optimization algorithm

Due to the nature of this problem, which involves many equa-
tions for the rigorous simulation of processes, a metaheuristic op-
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Table 2
Current values in each case and limits for decision variables in all cases.
Units
Value Case Reactor 1 Reactor 2 Reactor 3
Temp (K)  Press (MPa) Temp  Pres (MPa) Temp (K) Press (MPa)
Current 1 533 0.5 NA NA 1373 0.1
2 773 3.6 773 3.86 973 4
3 773 3.6 773 3.86 1373 0.1
Min 1to3 520 0.4 750 3.6 950 0.05
Max 1to3 780 3.7 800 4 1400 4.5

timization algorithm is necessary. The multi-objective optimization
hybrid method I-MODE (Sharma & Rangaiah, 2013) works with
three different termination criteria: Chi-squared termination crite-
rion (ChiTC), Steady State termination criterion (SSTC) and Maxi-
mum Number of Generations (MNG). The I-MODE algorithm has
been successfully used in a general methodology (Ponce-Ortega
& Hernandez-Pérez, 2019)in order to optimize previously estab-
lished process flow diagrams. That methodology consists in linking
a commercial software of process simulation with a metaheuristic
optimization algorithm.

5.2. Decision variables

The selected decision variables are listed in Table 2. In general,
each reactor can be modified in two operating conditions, temper-
ature and pressure, these aspects impact in both objective func-
tions and they were selected as decision variables. The current val-
ues for all decision variables corresponding to the reaction units
are presented in Table 2. In the same way, Table 2 shows the val-
ues for boundaries, upper (Max) and lower (Min) limits.

In Table 2, there are some cells corresponding to the Reactor 2
in Case 1 (Siemens Process), in which the current value does not
apply (NA), which means that it has no current assigning values
because there is no "Reactor 2" device in this configuration. The
strategy used in this methodology in order to avoid mistakes in
the process of exporting and importing variables consists in creat-
ing a "fictitious unit" within the simulation. This means that a unit
(Reactor) with the name of "Reactor 2" was assigned to which the
random values of the selected variables in the metaheuristic opti-
mization algorithm are assigned, however, the streams of said unit
are not connected to other block within the simulation, so that it
does not affect with the obtained results.This strategy was chosen
because this is the best way to assign these values to a variable call
without creating a conflict in the export of data with the process
simulator. The costs corresponding to the unit were calculated be-
fore the creation of the "fictitious unit" and the calculation of any
utility cost is not ensured, so it is not involved in the calculation
of carbon dioxide emissions.

The initial value for the optimization metaheuristic algorithm
in each process was the half between the minimum and the max-
imum possible value.

5.3. Constraints

The constraints in this case study are implicit, it is that the pos-
sible restrictions are specified in the limits presented as minimum
and maximum values in Table 2. In such a way that the restrictions
of this case study can be formulated as expressed in Eq. 6:

Valyipn <X < Valyax (6)

Where i is the number of the decision variables, which can take
a value since 1 up to 7 considering x; (which corresponds to case
number or configuration process).

5.4. Parameters associated to the used algorithm

For the optimization process, in this study the values for the
parameters associated to the used I-MODE algorithm are the fol-
lowing: population size (PS): 10 individuals, maximum number of
generations (MNG): 30, taboo list size (TLS): 5 individuals, taboo
radius (TR): 0.01, crossover fraction (CF): 0.8, mutation fraction (F):
0.8.

With respect to evolutionary algorithms, these heuristic rules
are one of the main disadvantages, there is no exact way to deter-
mine the best values of the algorithm parameters. However, there
are many bibliographical references to choose a good value (for
example Sharma & Rangaiah, 2013). In this manuscript, the way
in which they were selected incudes a sensitivity analysis, which
consists in the following: a number is proposed for each parame-
ter (number of individuals, number of generations, etc.) separately,
then the result is analyzed after running the optimization, it is pro-
posed to double that value for the same parameter, if it improves
significantly it means that the proposed value is not enough, then
the procedure is repeated by doubling the value again until the
solution does not change in a considered way. Once an appropri-
ate value for a parameter has been found, the same procedure is
followed to find a suitable value for another parameter. For more
details see Sharma & Rangaiah (2013).

6. Results and discussion

This section presents the results of the multi-objective opti-
mization method. The simulation was performed on an Intel™
Core ™ {7-6700HM CPU @ 2.6 GHz, 32 GB computer, the com-
puting time required to obtain the Pareto optimal solutions was of
16.24 min. The I-MODE optimization approach has demonstrated
to be a superior metaheuristic technic for different applications
(Sharma and Rangaiah, 2016), because it requires lower computa-
tion time than other approaches. The complexity of the addressed
problem only is related to the computation time, and the imple-
mented approach can address such problems. Finally, but the most
important, if the simulations are optimized separately and each
one specifies the same values for the use of the I-MODE (PS: 10
individuals, MNG: 30 generations) this consumes the computing
time equivalent to the number of configurations to analyze. For
this case study, it was found that the total computation time re-
quired to explore all possible configurations separately was 48.72
min, which is too much greater than 16.24 min that correspond to
the computation time consumed using the proposed approach.

6.1. Results after Maximum Number of Generations (MNG)

The proposed strategy yields the Pareto sets shown in Fig. 8,
where there can be seen the optimal solutions generated accord-
ing to the stochastic procedure of this method corresponding to
the solutions for cases 1 to 3. Due to the methodological strat-
egy proposed in this paper, only a Pareto graph is obtained after
running the metaheuristic optimization process. This Pareto plot is
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Fig. 8. Results after maximum number of generations for Cases 1 to 3.

obtained starting with the selected decision variables, their values
for the lower and upper bounds and the values for the parameters
associated to the used I-MODE algorithm.

The termination criterion shown in Fig. 8 corresponds to the
results after Maximum Number of Generations (MNG), which is
the total number of simulations needed to obtain the results. The
termination criterion corresponding to the MNG refers to a value
specified by the user in the optimization program interface as a

parameter and tells the algorithm to finish iterating. The graph
shown in Fig. 8 is a Pareto chart where the points shown there
are those obtained from the interaction of the two conflicting ob-
jective functions, each of those points is an optimum, however, it
is up to the decision maker to choose which of them best matches
both objectives. Values of the search variables correspond to each
of the points shown in Fig. 8. The results of the search variables
shown in Table 3 correspond to point C.
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Table 3
Optimal values for decision variables.

Case Value Unit Objective Functions
Reactor 1 Reactor 2 Reactor 3
Temp Press Temp Press Temp Press F1 F2
2 Actual 773 3.6 773 3.86 973 4 1.09 7.48
Optimal  701.12 3.34 752.61 3.76 1394.23  3.60 1.09 6.81
Percent -9% -7% -3% -3% 43% -10% 0% -9%

6.2. Optimal values for search variables

The I-MODE algorithm gives the Pareto graph according with
the chosen termination criterion. In that graphic, it is possible to
select by the decision maker a point which properly reconciles
both objective functions. Also, it is possible to read the optimal
value for every decision variable in the selected point. Temperature
was expressed in Kelvin and pressure in Mega Pascals. TP is ex-
pressed in millions of US$ per year (MUS$/yr) and TE is expressed
in millions of Tons per year (MTon/yr)

The optimal values of the selected decision variables after run-
ning the optimization of chosen scenario are shown in Table 3.

The best configuration according with this optimization
methodology was the Case 2.The results in the Pareto chart cor-
responding to Case 2 are the points from C to D, that is, all inter-
mediate points between the previous two are optimal solutions of
the configuration represented in Case 2.

The reason why Case 2 was selected as the configuration with
the best results was that the points corresponding to this equip-
ment arrangement are the ones that best reconcile both objective
functions with intermediate values for both. While in points A and
B that correspond to the configurations of Case 3 and Case 1, re-
spectively, show decreases in the economic objective function, this
means that if they significantly reduce the environmental objec-
tive function (CO, emissions fall to 2.08 MTon/yr equal to 72%)
but compromise likewise the profit of the process (net profit fall
to 0.34 MUS$/yr equal to 69%) in point B. While point A exhibits a
net gain of zero, so it is not analyzed in this study.

6.3. Optimal values for objective functions

As can be seen in the Pareto graphics after MNG, there are dif-
ferent optimal solutions for this problem. In Fig. 8, four important
points can be identified (A, B, C and D). Point A has a gross TP
but the minimum value for TE, this point corresponds to Case 3.
In point B can be seen intermediate values for both objective func-
tions, this point corresponds to Case 1. Point C shows the mini-
mum increase in TP with a considerable increase in TE, this set of
points until point D corresponds to optimal solutions obtained in
Case 2.

Table 3 also shows the values for the objective functions at the
optimal values found for search variables in the selected config-
uration case with the best performance (Case 2).For this purpose,
point C was selected within the set of optimal values that take part
in the solutions of that case because it represents intermediate val-
ues for both objective functions.

Finally, Table 3 shows the percentage of change for decision
variables and objective functions. A positive percentage represents
an increment of the values and in the same way a negative per-
centage represents a decrement in the values for search variables
and for objective functions. As can be seen in this table, the so-
lutions generated according to the stochastic procedure of this
method does not represent a considerable improvement in the
performance of the economic objective function (TP), however it
presents a reduction in the environmental objective function (TE)

of 0.67 MTon/yr, which is equivalent to reduce 9% the CO, emis-
sions. The above is due to the objective of satisfying two contra-
dictory objectives at the same time, so that the optimization al-
gorithm will find solutions in which there is a desired value for
a single objective function as well as some intermediate values of
both.

6.4. Algorithm mechanism analysis

It should be noticed that the proposed methodology was dis-
placing the cases with the worst performance, the metaheuristic
optimization algorithm focused on simulating the most successful
configurations. However, in this work a multi-objective optimiza-
tion was incorporated, so the algorithm retained the configura-
tions that had the best performance in the other objective func-
tion. This explains why in the last generation the configurations
appear with a lower TP (maximization objective), but also with a
lower TE (minimization objective).

The pareto graph shown in Fig. 8 offers one point for each un-
successful configuration (Case 1 and Case 3 for points B and A,
respectively), while for the most successful configuration (Case 2)
it offers seven optimal points (of the which point C). The mech-
anism of the algorithm is described as follows. As the first step
of the algorithm, random values of the search variables are pro-
posed within the limits specified by the user, the values of these
variables will be subsequently exported to the process simulator
(Aspen Plus). The structural configuration of the process is repre-
sented in a simulator file that only differs by a number (from one
to three in this study). As an integer variable corresponding to the
process configuration (Case Number) that could change from one
to three was declared, this value is also proposed randomly by the
algorithm, so a structural configuration is being chosen at the same
time as values of search variables. As it is an evolutionary algo-
rithm, it will gradually reproduce the simulations of the configu-
ration that offers better values for both objective functions, how-
ever, in the pareto the points corresponding to the less successful
configurations will continue appearing because they have similar
extreme values. Therefore, after a specified number of generations
(considering MNG as the selected termination criteria), the algo-
rithm will offer a graph with the points corresponding to the best
values for the objective functions without the need to simulate the
configurations that do not offer a good outcome. In this way, it
saves the computing time that it would take to evaluate each con-
figuration with random values and then compare them.

The optimal solutions are unevenly distributed due to the way
the graph is elaborated. A more detailed description of how the op-
timization algorithm offers the points for the graphical reading can
help to better understand this behavior. For each of these points,
the minimum is one in one of the axes, that is, it is based on the
minimization of one of the objective functions and with this, the
values of the other axis are calculated, so that each of the points
shown in the solution graph can be considered as optimal. How-
ever, the decision maker is the one who chooses a single point of
the graph as the best solution which conciliates in the most con-
venient way the performance of both objective functions and that
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these are usually conflicting. In the same line, it may be that the
solution graph presents a series of points grouped in a zone (such
as the series of points between C and D), which means that it is
in this part where a greater number of solutions have been found
feasible. Indeed, the difference between points C to D does not rep-
resent a considerable change in the economic objective function, so
the best option for the decision maker would be to choose point
C, since it represents practically the same gain as point D but with
less CO, emissions.

7. Conclusion

This work has presented a new multi-objective optimization
methodology where it is possible to optimize the structural config-
uration of the process flow diagram simultaneously with the best
operating conditions. This technique is possible through a code
that uses the case number of the configuration as an integer vari-
able, in this way, it is proposed randomly the solution of a partic-
ular configuration with values of the search variables and through
generations move less successful configurations and search variable
values are proposed only for the most successful flowsheets. Us-
ing this multi-objective optimization methodology through meta-
heuristic techniques, it is possible to considerably reduce the com-
putation time by just simulating the best configurations.

A case study for the optimal production of silicon grade silane
is presented. Three different process configurations were simulta-
neously optimized. The results obtained in the case study (SGSP)
are attractive for both objective functions, and the computation
time is almost the third part of the case of optimizing each config-
uration separately. In the addressed case study, the entire annual
emissions of CO, were reduced between 9% in the Case 2, whereas
the TP presents a constant value, that is, by changing only the op-
erating conditions of the reactor of said configuration, it is possible
to reduce CO, emissions and at the same time maintain the same
economic gains.

The main contribution of this work is not only the algorithm
used, but also the strategy of simultaneous optimization of vari-
ous possible configurations to displace the least successful ones in
the performance of the objective function. In such a way that the
objective of this methodology is not to be faster than other meta-
heuristic tools, but rather to be faster than using the same algo-
rithm when solving each configuration separately.

Finally, the proposed approach can address different processes
because it is general. The case studies to which this methodology
can be implemented are in those in which multiple configurations
can be chosen. Likewise, it is necessary that the search variables
can be shared in the process flow diagrams to be chosen.
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